US009052888B2

a2 United States Patent 10) Patent No.: US 9,052,888 B2
Schmidt 45) Date of Patent: Jun. 9, 2015
(54) VECTORIZATION IN AN OPTIMIZING 7.447,886 B2  11/2008 Leeetal.
COMPILER 7,743,366 B2* 6/2010 Wezelenburg et al. ....... 717/131
7,962,906 B2 6/2011 O’Brien et al.
. . . . 8,032,875 B2* 10/2011 Koscheetal. ................ 717/154
(71) Applicant: Internatl(?nal Business Machines 8.166.462 B2* 4/2012 Kosche etal. . 17131
Corporation, Armonk, NY (US) 8,578,348 B2* 11/2013 Fliessetal. ... . 7177151
8,612,949 B2  12/2013 Liao et al.
(72) Inventor: William J. Schmidt, Rochester, MN 8,752,021 B2* 6/2014 Lietal. ..ccooevvrirrnnnnas 717/131
(US) 8,826,254 B2* 9/2014 Gounares etal. ............. 717/151
2002/0108107 Al 8/2002 Darnell et al.
N .
(73) Assignee: International Business Machines 2004/0003381 Al 1/2004 .Suzum etal 717150
Corporation, Armonk, NY (US) (Continued)
(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
patent is extended or adjusted under 35 Gaurav Mitra et al.; Use of SIMD Vector Operations to Accelerate
U.S.C. 154(b) by 102 days. Application Code Performance on Low-Powered ARM and Intel
) Platforms; IEEE 2013, retrieved on Jan. 16, 2015; pp. 1107-1116.
(21)  Appl. No.: 13/772,792 Retrieved from Internet: <URL: http://ieecexplore.ieee.org/stamp/
(22) Filed: Feb. 21. 2013 stamp.jsp?tp=&arnumber=6650996>.*
’ T (Continued)
(65) Prior Publication Data
US 2014/0237217 Al Aug. 21,2014 Primary Examiner — Thuy Dao
Assistant Examiner — Hanh T Bui
(51) Int.CL (74) Attorney, Agent, or Firm — Martin & Associates, LLC
GOG6F 9/144 (2006.01)
GOG6F 9/145 (2006.01)
GOG6F 9/30 (2006.01) 7 ABSTRACT
(52) U.S.CL An optimizing compiler includes a vectorization mechanism
CPC .............. GO6F 9/3001 (2013.01); GO6F 8/443 that optimizes a computer program by substituting code that
(2013.01) includes one or more vector instructions (vectorized code) for
(58) Field of Classification Search one or more scalar instructions. The cost of the vectorized
CPC ... GO6F 8/443; GO6F 8/41; GO6F 9/45516; code is compared to the cost of the code with only scalar
GOGF 8/452; GO6F 11/3624; GOG6F 9/30036; instructions. When the cost of the vectorized code is less than
GO6F 8/4441; GOG6F 8/433; GO6F 11/3604; the cost of the code with only scalar instructions, the vector-
GO6F 11/3688; GO6F 11/3684; GOG6F 11/3692; ization mechanism determines whether the vectorized code
GO6F 11/3636 will likely result in processor stalls. If not, the vectorization
See application file for complete search history. mechanism substitutes the vectorized code for the code with
only scalar instructions. When the vectorized code will likely
(56) References Cited result in processor stalls, the vectorization mechanism does

U.S. PATENT DOCUMENTS

5,802,375 A
6,938,249 B2 *

9/1998 Ngo et al.
8/2005 Roedigeretal. .............. 717/151

not substitute the vectorized code, and the code with only
scalar instructions remains in the computer program.

6 Claims, 11 Drawing Sheets

800

L

810

Convert Scalar Code to Vectorized Code |/

Cost of Vectorized Code
< Cost of Scalar Code?

Substitute Vectorized Code for
Scalar Code

830
|

A 4

( Done )



US 9,052,888 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2005/0149918 Al 7/2005 Liuetal.

2005/0273769 Al  12/2005 Eichenberger et al.

2008/0250399 Al* 10/2008 Huangetal. ................ 717/151
2013/0073837 Al* 3/2013 Lietal. ... . 712/222

2013/0074057 Al* 3/2013 Gounaresetal. ............ 717/154
2013/0205281 Al 8/2013 Pizlo etal.
2013/0205286 Al* 82013 Barracloughetal. ... 717/151

2014/0237217 Al* 8/2014 Schmidt
OTHER PUBLICATIONS

712/222

Kirste Asanovic; Vector Processors; MIT; retrieved on Jan. 16, 2015;
pp. 1-55; Retrieved from the Internet: <URL: http://people.cs.
clemson.edw/~mark/464/appG.pdf>.*

Timothy W. Hnat et al.; MacroLab: A Vector-based Macroprogram-
ming Framework for Cyber-Physical Systems; ACM 2008; retrieved
online on Jan. 16, 2015; pp. 225-238; Retrieved from the Internet:
<URL:  http://delivery.acm.org/10.1145/1470000/1460435/p225-
hnat.pdf?>*

Agner Fog, “Optimizing software in C++ An Optimization guide for
Windows, Linux and Mac platforms”, 2004-2014, Technical Univer-
sity of Denmark, pp. 1-164, retrieved online on Mar. 30, 2015 at
“http://www.agner.org/optimizing_ cpp.pdf”.*

Leonid Oliker, “Leading Computational Methods on Scalar and Vec-
tor HEC Platforms”, Proceedings of the 2005 ACM/IEEE SCO05
Conference, retrieved online on Mar. 30, 2015 at “http://delivery.
acm.org/10.1145/1110000/1105827/27580062.pdf?”.*

Alvanos, Michail, “Auto-Vectorization with little help!”, https://
sites.google.com/site/malvanos/tutorials/auto-vectorize, printed Jan.
25,2013.

“Multi-Core Software”, Intel Technology Journal, http://www.intel.
com/technology/itj/2007/v11i4/1-inside/5-vectorizerhtm, printed
Jan. 25, 2013.

Yuanyuan et al., “An Open64-based cost analytical model in auto-
vectorization”, 2010 International Conference on Educational and
Information Technology (ICEIT 2010).

Linthicum, Tony, “RFC: vectorizer cost model”, http://readlist.com/
lists/gec.gnu.org/gec/1/9402 html, Feb. 16, 2007.

Pouchet, Louis-Noel, “Transfomation Selection for Good Vectoriza-
tion”, Nov. 2010.

Stock et al., “Using Machine Learning to Improve Automatic
Vectorization”, ACM Transactions on Architecture and Code Opti-
mization, vol. V, No. N., printed Jan. 25, 2013.

Park et al., “Predictive Modeling in a Polyhedral Optimization
Space”, International Journal of Parallel Programming, vol. 41, Issue
5, pp. 704-750, Oct. 2013.

* cited by examiner



U.S. Patent Jun. 9, 2015 Sheet 1 of 11 US 9,052,888 B2

100
~/110 /
Processor /112
| VPU H 114
| Vector Registers |-/

160
< /

=L 7

Main Memory
1210 —— Data .
122 — Operating System
128 — Source Code
124 I Intermedlage

........ Representation

125 — Compiler

Vectorization
126 Mechanism
127 —  Machine Code

IS,

| Mass Storage /F | |  Display IFF | Network I/F
L "TO
Local M 155

OcCal Mass .
Storage / Display / /
/ 175 175

1 165

195

@/ FIG. 1



U.S. Patent Jun. 9, 2015 Sheet 2 of 11 US 9,052,888 B2

subroutine example1(n,x,y,z,max)
integer k,n
real*4 x(n),y(n),z(n)

dok=1,n-2

x(k) = y(k+1) * z(k+2)

if (x(k).gt.max) max = x(k)
enddo

return

FIG. 2

loop:
scalar-add yptr =&y, i
scalar-add zptr =&z, i
scalar-load yelt= *(yptr + 4)
scalar-load zelt = *(zptr + 8)
scalar-mult tmp = yelt, zelt
scalar-store *(&x + 1) = tmp
scalar-max max = max, tmp
scalar-add 1=1,4
decr-branch loop

FIG. 3
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loop:
scalar-add yptr =yadj, i
scalar-add zptr =zadj, 1
vector-load y qw2 = *(yptr)
vector-load z_qw2 = *(zptr)
vector-perm yelts =y qwl,y qw2,y shift
vector-copy y qwl =y qw2
vector-perm zelts=z qwl, z qw2, z_shift
vector-copy z qwl =z qw2
vector-mult tmp = yelts, zelts
vector-store *(&x, 1) = tmp
scalar-max max = max, tmp[0]
scalar-max max = max, tmp[1]
scalar-max max = max, tmp[2]
scalar-max max = max, tmp[3]
scalar-add 1=1, 16
decr-branch loop

FIG. 4

subroutine example2(n,x,y,z,m,p,q)
integer k,n
real*4 x(n),y(n),Z(n),m(n),p(n),q(n)
dok=1,n-2

x(k) = y(k+1) * z(k+2) + p(k+1) - q(k+2)

m(k) = p(k+1) * q(k+2) + z(k+2) - y(k+1)
enddo

return

FIG. 5
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loop:
scalar-add yptr =&y, 1
scalar-add zptr =&z, 1
scalar-add pptr = &p, 1
scalar-add qptr=&q, 1
scalar-load yelt = *(yptr + 4)
scalar-load zelt = *(zptr + 8)
scalar-load pelt = *(pptr + 4)
scalar-load gelt = *(qptr + 8)
scalar-fmadd tmp1 = yelt, zelt, pelt
scalar-fmadd tmp2 = qelt, gelt, zelt
scalar-sub tmp3 =tmpl, gelt
scalar-sub tmp4 = tmp2, yelt
scalar-store *(&x + 1) = tmp3
scalar-store *(&m + 1) = tmp4
scalar-add 1=1,4
decr-branch loop

FIG. 6
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loop:
scalar-add yptr =yadj, i
scalar-add zptr = zadj, i
scalar-add pptr = padj, i
scalar-add qptr =qadj, i
vector-load y qw2 = *(yptr)
vector-load z_qw2 = *(zptr)
vector-load p qw2 = *(pptr)
vector-load q_qw2 = *(qptr)
vector-perm yelts =y qwl,y qw2,y shift
vector-copy y qwl =y qw2
vector-perm zelts=z qwl, z qw2, z_shift
vector-copy z qwl =z qw2
vector-perm pelts =p qwl, p qw2, p_shift
vector-copy p qwl =p qw2
vector-perm qelts =q_qwl, q qw2, q_shift
vector-copy q qwl =q qw2
vector-fmadd tmpl = yelts, zelts, pelts
vector-fmadd tmp2 = pelts, qgelts, zelts
vector-sub tmp3 =tmpl, gelts
vector-sub tmp4 = tmp2, yelts
vector-store *(&x, 1) = tmp3
vector-store *(&m, 1) = tmp4
scalar-add 1=1, 16
decr-branch loop

FIG. 7
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1
VECTORIZATION IN AN OPTIMIZING
COMPILER

BACKGROUND

1. Technical Field

This disclosure generally relates to computer systems, and
more specifically relates to compilers that generate execut-
able code for computer systems.

2. Background Art

Computer systems have evolved into extremely sophisti-
cated devices, and computer systems may be found in many
different settings. Dramatic advances in both hardware and
software (e.g., computer programs) have drastically
improved the performance of computer systems. Modern
software has become very complex when compared to early
computer programs. Many modern computer programs have
tens or hundreds of thousands of instructions. The execution
time (and hence, performance) of a computer program is very
closely related to the number and complexity of instructions
that are executed as the computer program runs. Thus, as the
size and complexity of computer programs increase, the
execution time of the computer program increases as well.

Unlike early computer programs, modern computer pro-
grams are typically written in a high-level language that is
easy to understand by a human programmer. Special software
tools known as compilers take the human-readable form of'a
computer program, known as “source code”, and convert it
into “machine code” or “object code” instructions that may be
executed by a computer system. Because a compiler gener-
ates the stream of machine code instructions that are eventu-
ally executed on a computer system, the manner in which the
compiler converts the source code to object code affects the
execution time of the computer program.

The execution time of a computer program, especially
complex computer programs, is a function of the arrangement
and type of instructions within the computer program. Many
different optimizations have been developed so the code pro-
duced by compilers has better run-time performance. One
such optimization is converting scalar instructions, such as
those in a loop, to vectorized instructions, known as vector-
ization. Known vectorization methods can produce vector-
ized code that actually reduces the performance of the com-
puter program.

BRIEF SUMMARY

An optimizing compiler includes a vectorization mecha-
nism that optimizes a computer program by substituting code
that includes one or more vector instructions (vectorized
code) for one or more scalar instructions. The cost of the
vectorized code is compared to the cost of the code with only
scalar instructions. When the cost of the vectorized code is
less than the cost of the code with only scalar instructions, the
vectorization mechanism determines whether the vectorized
code will likely result in processor stalls. If not, the vector-
ization mechanism substitutes the vectorized code for the
code with only scalar instructions. When the vectorized code
will likely result in processor stalls, the vectorization mecha-
nism does not substitute the vectorized code, and the code
with only scalar instructions remains in the computer pro-
gram. One way to determine when the vectorized code will
likely result in processor stalls is to compute a vector instruc-
tion density or vector cost density.
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2

The foregoing and other features and advantages will be
apparent from the following more particular description, as
illustrated in the accompanying drawings.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWING(S)

The disclosure will be described in conjunction with the
appended drawings, where like designations denote like ele-
ments, and:

FIG. 1 is a block diagram of an apparatus that includes a
vectorization mechanism in an optimizing compiler;

FIG. 2 is a diagram showing a first sample snippet of
Fortran code;

FIG. 3 is a diagram showing an intermediate code repre-
sentation that includes only scalar instructions for the code
shown in FIG. 2;

FIG. 4 is a diagram showing an intermediate code repre-
sentation for the code shown in FIG. 2 that includes vector
instructions;

FIG. 5 is a diagram showing a second sample snippet of
Fortran code;

FIG. 6 is a diagram showing an intermediate code repre-
sentation that includes only scalar instructions for the code
shown in FIG. 5;

FIG. 7 is a diagram showing an intermediate code repre-
sentation for the code shown in FIG. 5 that includes vector
instructions;

FIG. 8 is a flow diagram of a method for converting scalar
code to vectorized code using a simple cost model;

FIG. 9 is a flow diagram of a method for converting scalar
code to vectorized code that takes the likelihood of processor
stalls into account;

FIG. 101is a flow diagram of a first specific implementation
for method 900 in FIG. 9;

FIG. 11 is a formula for computing vector instruction den-
sity;

FIG. 12 is a flow diagram of a second specific implemen-
tation for method 900 in FIG. 9;

FIG. 13 is a formula for computing vector cost density;

FIG. 14 is a flow diagram of a method that skips checking
for processor stalls for small loops; and

FIG. 15 is a flow diagram of a method for increasing cost of
vectorized code.

DETAILED DESCRIPTION

Most computer processors in common use today include a
vector processing unit. The vector processing unit is respon-
sible for executing a subclass of the instruction set architec-
ture that performs single-instruction, multiple-data opera-
tions. That 1is, the same operation is performed
simultaneously on multiple register values during the same
unit of processing time.

For example, the PowerPC architecture includes sixty-four
128-bit vector registers. The contents of a vector register may
be treated as a single 128-bit quadword, two 64-bit double-
words, four 32-bit words, eight 16-bit halfwords, or sixteen
8-bit bytes. All of these values may be interpreted as signed or
unsigned integers, or, in the case of 32-bit words and 64-bit
doublewords, IEEE floating-point values. The PowerPC
instruction set architecture includes many instructions that
operate on the vector registers using these different interpre-
tations. As an example, the “vxmuldp” instruction (VSX Vec-
tor Multiply Double-Precision) multiplies the leftmost 64 bits
of register A by the lefimost 64 bits of register B as double-
precision floating-point values, placing the result in the left-
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most 64-bits of register C, while simultaneously performing
the identical operation on the rightmost 64 bits of registers A,
B, and C.

Vector instructions are very important to high-performance
computing applications, which typically perform uniform
operations on large arrays of data. Nested loops are used to
access array elements in a predictable pattern, often sequen-
tial or incrementing an array index by a fixed amount during
each loop iteration. For processing such loops, vector instruc-
tions are superior to their scalar counterparts. If a loop is
operating on 32-bit values, a processor with 128-bit vector
registers can perform the same operations using about one
quarter of the instructions. Assuming the instructions are
well-scheduled on a pipelined, superscalar processor, this can
produce up to a fourfold improvement in processing time.

Because different instruction set architectures contain dif-
ferent vector capabilities and implementations, it is not prac-
tical for the programmer of a high-performance computing
application to directly manipulate the vector registers. This
would require writing in non-portable assembly code, which
would have to be rewritten for each target instruction set
architecture. Instead, the job of effectively utilizing vector
registers and single instruction, multiple data instructions
falls to the compiler. Compilers are capable of performing
considerable analysis on loops and determining when a scalar
loop can be converted into a loop that makes use of vector
instructions. This process is known as “vectorization.” The
vectorized loop will have fewer iterations than the scalar loop.
When four 32-bit values are packed into a single 128-bit
register for the loop operations, we say that the “vectorization
factor” is four.

Deciding whether or not aloop should be vectorized can be
quite important to the overall performance of a high-perfor-
mance computing application. Such applications by their
nature spend a preponderance of their processing time in
loops. If a loop can be profitably vectorized, large speedups
are possible. Conversely, if the vector instructions end up
being less efficient than the original scalar instructions, per-
formance can suffer greatly. Therefore it is highly important
that the vectorizer make accurate decisions about which loops
to vectorize.

Known optimizing compilers make vectorization deci-
sions based on a simple cost model. In other words, if the
vectorized instructions require less processing time than the
scalar instruction counterparts, the vectorized instructions are
substituted for the scalar instructions. However, the simple
cost model does not account for processor stalls that can occur
due to the interaction of instructions that may cause run-time
latencies between dependent instructions, overutilization of
scarce resources, pipeline conflicts, and so forth. Indeed, such
detailed modeling is impossible for the high-level vectorizer
pass in the compiler, since the compiler does not know ulti-
mately how the instructions will be scheduled by the low-
level instruction scheduling pass that will occur later, and
what effects other intervening optimization phases may have
on the vectorized loop. The net result in the prior art is opti-
mizing compilers can make vectorization decisions that actu-
ally decrease the performance of the code due to processor
stalls.

The claims and disclosure herein provide an optimizing
compiler that includes a vectorization mechanism that opti-
mizes a computer program by substituting code that includes
one or more vector instructions (vectorized code) for one or
more scalar instructions. The cost of the vectorized code is
compared to the cost of the code with only scalar instructions.
When the cost of the vectorized code is less than the cost of
the code with only scalar instructions, the vectorization

20

40

45

55

4

mechanism determines whether the vectorized code will
likely result in processor stalls. If not, the vectorization
mechanism substitutes the vectorized code for the code with
only scalar instructions. When the vectorized code will likely
result in processor stalls, the vectorization mechanism does
not substitute the vectorized code, and the code with only
scalar instructions remains in the computer program. The
result is a more intelligent vectorization mechanism that
avoids vectorizing code when the potential for the vectorized
code to cause processors stalls is high.

Referring to FIG. 1, a computer system 100 is one suitable
implementation of a computer system that includes an opti-
mizing compiler with a vectorization mechanism that per-
forms vectorization for loops in a computer program. Com-
puter system 100 is an IBM zEnterprise System computer
system. However, those skilled in the art will appreciate that
the disclosure herein applies equally to any computer system,
regardless of whether the computer system is a complicated
multi-user computing apparatus, a single user workstation, or
an embedded control system. As shown in FIG. 1, computer
system 100 comprises one or more processors 110, a main
memory 120, a mass storage interface 130, a display interface
140, and a network interface 150. These system components
are interconnected through the use of a system bus 160. Mass
storage interface 130 is used to connect mass storage devices,
such as local mass storage device 155, to computer system
100. One specific type of local mass storage device 155 is a
readable and writable CD-RW drive, which may store data to
and read data from a CD-RW 195.

Main memory 120 preferably contains data 121, an oper-
ating system 122, source code 123, an intermediate represen-
tation 124, a compiler 125, and machine code 127. Data 121
represents any data that serves as input to or output from any
program in computer system 100. Operating system 122 is a
multitasking operating system. There are three different rep-
resentations of a computer program in FIG. 1, namely the
high-level source code 123, the intermediate representation
124 that is generated by a front-end compiler from the source
code 123, and the machine code 127 that is generated by a
back-end compiler from the intermediate representation 124.
The compiler 125 is preferably an optimizing back-end com-
piler that compiles the intermediate representation 124 and
generates the machine code 127. Compiler 125 may also be
used to generate the intermediate representation 124 from the
source code 123, or this may be done using a different com-
piler. The compiler 125 includes a vectorization mechanism
126 that analyzes the computer program and makes decisions
regarding vectorization based on likelihood of processor
stalls. In the examples herein, the compiler 125 operates on
the intermediate representation 124 of the computer program.
However, the compiler 125 could also operate on the source
code 123 as well.

Note the source code 123, intermediate representation 124,
compiler 125, and machine code 127 are all shown residing in
memory 120 for the convenience of showing all of these
elements in one drawing. One skilled in the art will appreciate
that this is not the normal mode of operation for most com-
pilers. A front-end compiler processes source code 123 and
generates therefrom intermediate representation 124. This
processing may occur on a computer system separate from
computer system 100. Compiler 125 processes intermediate
representation 124 and generates therefrom machine code
127, which may also occur on a separate computer system. In
the extreme, source code 123 could reside on a first computer
system and a front-end compiler could reside on a second
computer system. The front-end compiler could read the
source code 123 from the first computer system, generate the
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intermediate representation 124, and store the intermediate
representation 124 on a third computer system. Compiler 125
could be executed on a fourth computer system, which reads
the intermediate representation 124 from the third computer
system, and generates therefrom machine code 127, which
could be written to a fifth computer system. This simple
example shows that the preferred embodiments expressly
extend to any suitable configuration and number of computer
systems to accomplish the front-end and back-end compiling.
The “apparatus” described herein and in the claims expressly
extends to a multiple computer configuration, as described by
the example above.

Computer system 100 utilizes well known virtual address-
ing mechanisms that allow the programs of computer system
100 to behave as if they only have access to a large, contigu-
ous address space instead of access to multiple, smaller stor-
age entities such as main memory 120 and local mass storage
device 155. Therefore, while data 121, operating system 122,
source code 123, intermediate representation 124, compiler
125, and machine code 127 are shown to reside in main
memory 120, those skilled in the art will recognize that these
items are not necessarily all completely contained in main
memory 120 at the same time. It should also be noted that the
term “memory” is used herein generically to refer to the entire
virtual memory of computer system 100, and may include the
virtual memory of other computer systems coupled to com-
puter system 100.

Processor 110 may be constructed from one or more micro-
processors and/or integrated circuits. Processor 110 includes
a vector processing unit 112 that performs operations on
vector registers 114 according to a defined vector instruction
set that includes vector instructions. Processor 110 executes
program instructions stored in main memory 120. Main
memory 120 stores programs and data that processor 110 may
access. When computer system 100 starts up, processor 110
initially executes the program instructions that make up oper-
ating system 122. Processor 110 also executes the compiler
125.

The VPU 112 and vector registers 114 are shown in FIG. 1
to illustrate that the code generated by compiler 125 is code
that will run on a processor with these features. The processor
110 that executes the compiler 125 need not necessarily
include a VPU 112 and vector registers 114.

Although computer system 100 is shown to contain only a
single processor and a single system bus, those skilled in the
art will appreciate that an optimizing compiler as taught
herein may be practiced using a computer system that has
multiple processors and/or multiple buses. In addition, the
interfaces that are used preferably each include separate, fully
programmed microprocessors that are used to off-load com-
pute-intensive processing from processor 110. However,
those skilled in the art will appreciate that these functions may
be performed using 1/O adapters as well.

Display interface 140 is used to directly connect one or
more displays 165 to computer system 100. These displays
165, which may be non-intelligent (i.e., dumb) terminals or
fully programmable workstations, are used to provide system
administrators and users the ability to communicate with
computer system 100. Note, however, that while display
interface 140 is provided to support communication with one
or more displays 165, computer system 100 does not neces-
sarily require a display 165, because all needed interaction
with users and other processes may occur via network inter-
face 150.

Network interface 150 is used to connect computer system
100 to other computer systems or workstations 175 via net-
work 170. Network interface 150 broadly represents any suit-
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able way to interconnect electronic devices, regardless of
whether the network 170 comprises present-day analog and/
or digital techniques or via some networking mechanism of
the future. Network interface 150 preferably includes a com-
bination of hardware and software that allow communicating
on the network 170. Software in the network interface 150
preferably includes a communication manager that manages
communication with other computer systems 175 via net-
work 170 using a suitable network protocol. Many different
network protocols can be used to implement a network. These
protocols are specialized computer programs that allow com-
puters to communicate across a network. TCP/IP (Transmis-
sion Control Protocol/Internet Protocol) is an example of a
suitable network protocol that may be used by the communi-
cation manager within the network interface 150.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
ormore computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
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gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

Referring to FIG. 2, a sample Fortran subroutine called
example 1 is shown to illustrate vectorization of loops in a
computer program. The subroutine in FIG. 2 is one suitable
example of source code 123 shown in FIG. 1. The code in
FIG. 2 accepts an integer n, pointers to arrays X, y, and z, and
a floating-point value max. Each array consists of n four-byte
floating-point values. The values iny and z are used to modify
the values in x, and max is updated if any results exceed it.

FIG. 3 shows a representation of one scalar iteration of this
loop in intermediate representation 124 in FIG. 1. In FIG. 3,
“&y” means the beginning address of the array y; *(yptr+4)
means to add 4 to the address stored in yptr and either load
from or store to the resulting address; and “decr-branch”
means to decrement the register that contains the number of
loop iterations (initially k) and branch back to the top of the
loop if the result is not zero. For simplicity, assume that each
scalar instruction has a cost of one. Counting the branch, this
loop iteration then has a cost of nine.

Suppose that this code is compiled for a machine that can
operate on four four-byte floating-point values at once, using
16-byte vector registers. Then this code is a prime candidate
for automatic vectorization. Four values of y and four values
of z can be processed in parallel to produce four values of x

10

15

20

25

30

35

40

45

50

55

60

65

8

during each iteration of a vectorized loop, and only a fourth of
the number of iterations will be needed.

Suppose further that the machine can only load into and
store from vector registers if the values to be accessed are
aligned in memory on a 16-byte boundary. In the case of the
example 1 subroutine in FIG. 2, the compiler has no knowl-
edge regarding the alignment of the arrays x, y, and z. To
handle this, the alignment of the arrays will be detected at
runtime outside the loop, and represented by a “shift vector”
for each array. The first 16-byte “quadword” of memory that
contains part of each source array y and z is loaded outside the
loop as well.

Each iteration of the loop loads the next 16-byte quadword.
A “vector permute” instruction is used to select the correct
four elements from the two most recently loaded quadwords,
using the shift vector for the corresponding array, and place
them into a single vector register. Once the possibly mis-
aligned values have been loaded correctly, vector arithmetic
instructions may be performed straightforwardly.

The output array x can be assumed to be aligned within the
loop by performing up to 3 scalar iterations prior to the
vectorized loop. Note that aligning x will probably misalign y
and z, since their elements are accessed at offsets that are not
divisible by four. For such reasons, in general we cannot align
all arrays in this manner.

For purposes of illustration, assume that the “maximum”
operation cannot be vectorized. Then an iteration of the vec-
torized loop for the example 1 subroutine in FIG. 2 would
appear as shown in FIG. 4, where yadj is the address of y with
its low-order 4 bits cleared to produce a 16-byte-aligned
address; y_qw1 and y_qw2 are the two quadwords that con-
tain the four elements of y in which we are interested, with
y_qwl1 initialized outside the loop; and y_shift is the vector
shift register, also initialized outside the loop, that tells the
vector-perm instruction which values to select from y_qwl
and y_qw2.

Assume that all vector and scalar instructions have a cost of
one, except for the vector-perm instruction, which has a cost
of four. The cost of a single vectorized iteration is then 22,
counting the branch. Since a single vectorized iteration cor-
responds to four scalar iterations, the vectorized cost 0f 22 is
significantly less than the equivalent scalar cost of 9x4=36, so
this loop is profitable to vectorize.

For a second example, consider the example 2 Fortran
subroutine shown in FIG. 5. All of the earlier assumptions
with respect to example 1 remain in force. One possible scalar
iteration of the loop is shown in FIG. 6. Here, “scalar-fmadd
a, b, ¢” represents a single instruction to multiply a by b and
add ¢. We assume all scalar instructions have a cost of one, so
this loop iteration has a total cost of 16.

Now, one possible vectorized iteration of this loop is shown
in FIG. 7. Assume that all instructions have a cost of one,
except vector-perm has a cost of four and vector-fmadd has a
cost of two. Then the total cost of a vectorized iteration is 38.
Since this is smaller than 16x4=64, the loop again appears to
be profitable to vectorize.

Referring to FIG. 8, a method 800 is one way to perform
vectorization. Scalar code is converted to vectorized code
(step 810). For the examples in FIGS. 2-7, step 810 is the step
of converting the scalar code in FIG. 3 to the vectorized code
in FIG. 4, and the step of converting the scalar code in FIG. 6
to the vectorized code in FIG. 7. If the cost of the vectorized
code is less than the cost of the scalar code (step 820=YES),
the vectorized code is substituted for the scalar code in the
computer program (step 830). If the cost of the vectorized
codeis notless than the cost of the scalar code (step 820=NO),
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no substitution of vectorized code is performed, and the scalar
code remains in the computer program. Method 800 is then
done.

Method 800 uses a simple cost comparison between the
scalar code and the vectorized code to determine whether to
substitute the vectorized code into the computer program.
However, such a simple cost comparison could mask run-
time problems that could actually make the vectorized code
run less efficiently than the scalar code. For example, if the
vectorized code has a large number of vector instructions, the
vector processing unit in the processor may have to delay
issuing vector instructions until the vector processing unit is
free. That is, the processor may stall. In this scenario, the
simple cost model would not accurately reflect the cost of the
vectorized loop because the potential for the processor to stall
is not reflected in the simple cost model.

Referring to FIG. 9, a method 900 takes into account
whether processor stalls are likely in determining whether or
not to substitute vectorized code for scalar code. The scalar
code is converted to vectorized code (step 910). When the cost
of the vectorized code is less than the cost of the scalar code
(step 920=YES), method 900 determines likelihood of pro-
cessor stalls for the vectorized code (step 930). When proces-
sor stalls are not likely (step 940=NO), the vectorized code is
substituted for the scalar code in the computer program (step
950). When the cost of the vectorized code is not less than the
cost of the scalar code (step 920=NO), or when the vectorized
code makes processor stalls likely (step 940=YES), method
900 is done without performing the substitution of the vec-
torized code for the scalar code. In other words, the scalar
code remains in the program, and the vectorized code is not
used. By taking into account a likelihood of processor stalls in
deciding whether or not to substitute vectorized code for
scalar code, the vectorizer mechanism makes more intelligent
vectorization decisions.

Because processor stalls are real-time events during run-
time that depend on many different run-time factors, a com-
piler does not have all the information to accurately predict
exactly when a processor stall will occur at run-time. Further-
more, detailed modeling is impossible for the high-level vec-
torizer pass in the compiler, since it cannot tell how the
instructions will ultimately be scheduled by the low-level
instruction scheduling pass that will occur later. However, the
vectorizer mechanism can determine that processor stalls are
likely in different ways. A first way is shown in method 1000
in FIG. 10, which represents a first specific implementation
for method 900 in FIG. 9. Method 1000 begins by converting
the scalar code to vectorized code (step 1010). When the cost
of the vectorized code is less than the cost of the scalar code
(step 1020=YES), the vector instruction density of the vec-
torized code is computed (step 1030). For this specific
example, the vector instruction density is defined as shown in
FIG. 11 to be the number of vector instructions in the vector-
ized code divided by the total number of instructions in the
vectorized code. When the instruction density is less than a
predefined threshold (step 1040=YES), the vectorized code is
substituted for the scalar code in the computer program (step
1050). When the cost of the vectorized code is not less than
the cost ofthe scalar code (step 1020=NO), or when the vector
instruction density is not less than the threshold (step
1040=NO), method 1000 is done without performing the
substitution of the vectorized code for the scalar code. The
concept in the specific example in FIGS. 10 and 11 is straight-
forward: if the vector instruction density becomes too high,
processor stalls become more likely. When processor stalls
become too likely, the decision is made not to substitute the
vectorized code for the scalar code.
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A second way the vectorizer mechanism can determine that
processor stalls are likely is shown in FIGS. 12 and 13. FIG.
12 represents a second specific implementation for method
900 in FIG. 9. Method 1200 begins by converting the scalar
code to vectorized code (step 1210). When the cost of the
vectorized code is less than the cost of the scalar code (step
1220=YES), the vector cost density of the vectorized code is
computed (step 1230). For this specific example, the vector
cost density is defined as shown in FIG. 13 to be the cost of
vector instructions in the vectorized code divided by the total
cost of instructions in the vectorized code. When the vector
cost density is less than a predetermined threshold (step
1240=YES), the vectorized code is substituted for the scalar
code in the computer program (step 1250). When the cost of
the vectorized code is not less than the cost of the scalar code
(step 1220=NO), or when the vector cost density is not less
than the threshold (step 1240=NO), method 1200 is done
without performing the substitution of the vectorized code for
the scalar code. The concept in the specific example in FIGS.
12 and 13 is similarly straightforward to the previous
example: if the vector cost density becomes too high, proces-
sor stalls become more likely. When processor stalls become
too likely, the decision is made not to substitute the vectorized
code for the scalar code.

Referring to FIG. 14, method 1400 is similar in some
respects to method 900 in FIG. 9 described in detail above, but
with an additional check at step 1310. When the size of the
loop is less than a specified loop threshold (step 1310=YES),
method 1400 skips the checks at steps 930 and 940 that
determine whether processor stalls are likely, and substitutes
the vectorized code for the scalar code (step 950). Method
1400 recognizes that likelihood of processor stalls for small
loops is small, and therefore bypasses steps 930 and 940 when
the size of the loop is sufficiently small.

Note the examples herein are extremely simplified for the
purpose of illustration. In a real-world example, more instruc-
tions than shown in the two examples in FIGS. 2-7 would be
required to cause a modern processor to begin stalling. How-
ever, the concepts herein will be clear to one of ordinary skill
in the art. Should processor stalls become likely, as indicated
by either vector instruction density or vector cost density or
some other metric or heuristic, a decision will be made not to
vectorize a loop that would normally be vectorized using the
simple cost model used in method 800 in FIG. 8.

We now examine the examples in FIGS. 2-7 using method
1000 in FIG. 10. The previous discussion of FIGS. 2-7 show
the cost of the vectorized code is less than the cost of the scalar
code, so step 1020=YES in FIG. 10. For the vectorized code
in FIG. 4 ignoring the branch instruction, the vector instruc-
tion density is 8/(8+7)=0.533. We assume for this example a
threshold of 0.7 has been selected. For the example in FIG. 4
using method 1000 in FIG. 10, because the computed vector
instruction density of 0.533 is less than the threshold of 0.7
(step 1040=YES), the vectorized code in FIG. 4 will be sub-
stituted for the scalar code in FIG. 3 in the computer program
(step 1050). For the vectorized code in FIG. 7, the vector
instruction density is 18/(18+5)=0.783. For the example in
FIG. 7 using method 1000 in FIG. 10, because the computed
vector instruction density of 0.7826 is not less than the thresh-
old of 0.7 (step 1040=NO), the vectorized code is not substi-
tuted for the scalar code. We see from this simple example
how vector instruction density serves as an indicator of
whether processor stalls are likely, and vectorization deci-
sions can be made accordingly.

Next we examine the examples in FIGS. 2-7 using method
1200 in FIG. 12. The previous discussion of FIGS. 2-7 show
the cost of the vectorized code is less than the cost of the scalar
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code, so step 1220=YES in FIG. 12. For the vectorized code
in FIG. 4, the vector cost density is 14/(14+7)=0.667. We
assume for this example a threshold of 0.75 has been selected.
For the example in FIG. 4 using method 1200 in FIG. 12,
because the computed vector cost density 0of 0.667 is less than
the threshold of 0.75 (step 1240=YES), the vectorized code in
FIG. 4 will be substituted for the scalar code in FIG. 3 in the
computer program (step 1250). For the vectorized code in
FIG. 7, the vector cost density is 32/(32+5)=0.865. For the
example in FIG. 7 using method 1200 in FIG. 12, because the
computed vector cost density of 0.865 is not less than the
threshold of 0.75 (step 1240=NO), the vectorized code is not
substituted for the scalar code.

Note the thresholds for vector instruction density, instruc-
tion cost density, and loop size may be selected using any
suitable metric, heuristic, or measurement method. In one
specific implementation, test code is run to determine suitable
thresholds based on run-time performance of the test code.

In an alternative implementation, the cost of the vectorized
code may be increased when the vector density is not less than
the predetermined threshold, as shown in method 1500 in
FIG. 15. When the vector density is not less than the prede-
termined threshold (step 1510=NO), the cost of the vector-
ization code may be increased (step 1520). Note the term
“vector density” is used in FIG. 15 to include both vector
instruction density as described in FIGS. 10-11 as well as
vector cost density as described in FIGS. 12-13. One suitable
way to increase the cost of the vectorization code is to mul-
tiply the cost of the vectorization code by some predeter-
mined multiplier factor. For example, suppose we choose a
vector density threshold of 0.75, and we want the cost of a
loop to be gradually increased as its vector density rises, until
it is doubled at a vector density of 1.0. Then if the standard
cost model gives a vectorized cost of C and we measure a
vector density of V, the cost C' could be represented by the
following: C'=C when V<=0.75, and C'=C*(4V-2) when
V>0.75. Thus when the vector density is 0.8, C'=C*(3.2-2)=
1.2*C. In other words, the cost of the vectorized code is
increased by 20% based on the predetermined multiplier fac-
tor. When the vector density is 0.95, C'=C*(3.8-2)=1.8*C. In
other words, the cost of the vectorized code is increased by
80% based on the predetermined multiplier factor.

The claims and disclosure herein provide an optimizing
compiler that includes a vectorization mechanism that opti-
mizes a computer program by substituting code that includes
one or more vector instructions (vectorized code) for one or
more scalar instructions. The cost of the vectorized code is
compared to the cost of the code with only scalar instructions.
When the cost of the vectorized code is less than the cost of
the code with only scalar instructions, the vectorization
mechanism then computes a vector instruction density for the
vectorized code. When the vector instruction density is less
than a specified threshold, the vectorization mechanism sub-
stitutes the vectorized code for the code with only scalar
instructions. When the vector instruction density is more than
the specified threshold, the vectorization mechanism does not
substitute the vectorized code, and the code with only scalar
instructions remains in the computer program.

One skilled in the art will appreciate that many variations
are possible within the scope of the claims. Thus, while the
disclosure is particularly shown and described above, it will
be understood by those skilled in the art that these and other
changes in form and details may be made therein without
departing from the spirit and scope of the claims. For
example, while computing vector instruction density or vec-
tor cost density are suitable ways to determine when proces-
sor stalls are likely to occur, the disclosure and claims herein
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extend to any suitable way to determine when processor stalls
are likely to occur. In addition, while vectorizing loops is
discussed herein, the disclosure and claims expressly extend
to vectorizing any code, whether in a loop or not.

The invention claimed is:

1. A computer-implemented method executed by at least
one processor for processing a plurality of instructions in a
computer program to be executed by a processor that includes
a vector processing unit that processes a plurality of vector
instructions that operate on data in a plurality of vector reg-
isters, the method comprising the steps of:

analyzing a portion of the computer program;

generating from a first set of instructions in the computer

program that does not include any of the plurality of
vector instructions a second set of instructions that
includes at least one of the plurality of vector instruc-
tions;

determining when a second cost of processing the second

set of instructions is less than a first cost of processing
the first set of instructions;

when the second cost is less than the first cost, determining

when the second set of instructions is likely to cause the
processor running the computer program to stall when
executing the second set of instructions by determining
a ratio of vector instructions in the second set of instruc-
tions to total instructions in the second set of instruc-
tions;

when the second set of instructions is not likely to cause the

processor running the computer program to stall when
executing the second set of instructions, substituting the
second set of instructions for the first set of instructions
in the computer program;

when the second cost is not less than the first cost or when

the second set of instructions is likely to cause the pro-
cessor running the computer program to stall when
executing the second set of instructions, not substituting
the second set of instructions for the first set of instruc-
tions in the computer program.

2. The method of claim 1 wherein the step of determining
when the second set of instructions is likely to cause the
processor running the computer program to stall further com-
prises the steps of:

when the ratio is less than a predetermined threshold value,

the second set of instructions is not likely to cause the
processor running the computer program to stall; and
when the ratio is greater than or equal to the predetermined
threshold, the second set of instructions is likely to cause
the processor running the computer program to stall.

3. The method of claim 2 further comprising the step of
increasing the second cost by a predetermined multiplier
factor when the second cost exceeds the predetermined
threshold.

4. The method of claim 1 wherein the step of determining
when the second set of instructions is likely to cause the
processor running the computer program to stall when
executing the second set of instructions is only performed
when a number of instructions in the second set of instruc-
tions exceeds a predetermined threshold.

5. The method of claim 1 wherein the step of determining
when the second set of instructions is likely to cause the
processor running the computer program to stall comprises
the steps of:

determining a ratio of cost of vector instructions in the

second set of instructions to total cost of all instructions
in the second set of instructions;
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when the ratio is less than a predetermined threshold value,
the second set of instructions is not likely to cause the
processor running the computer program to stall; and

when the ratio is greater than or equal to the predetermined
threshold, the second set of instructions is likely to cause
the processor running the computer program to stall.

6. A computer-implemented method executed by at least
one processor for processing a plurality of instructions in a
computer program to be executed by at least one processor
that includes a vector processing unit that processes a plural-
ity of vector instructions that operate on data in a plurality of
vector registers, the method comprising the steps of:

analyzing a loop in the computer program;

generating from a first set of instructions in the computer

program that does not include any of the plurality of
vector instructions a second set of instructions that
includes at least one of the plurality of vector instruc-
tions;

determining when a second cost of processing the second

set of instructions is less than a first cost of processing
the first set of instructions;

when the second cost is less than the first cost, performing

the steps of:

determining when the second set of instructions contains
a number of instructions greater than a specified loop
instruction threshold;
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when the second set of instructions contains a number of
instructions greater than the specified loop threshold,
performing the steps of:
determining a ratio of vector instructions in the sec-
ond set of instructions to total instructions in the
second set of instructions;
when the ratio is less than a predetermined threshold,
increasing the second cost by a predetermined mul-
tiplier factor, and when the increased second cost is
less than the predetermined threshold value, sub-
stituting the second set of instructions for the first
set of instructions in the computer program; and
when the second cost is not less than the first cost or
when the ratio of vector instruction in the second
set of instructions is not less than the predetermined
threshold, not substituting the second set of instruc-
tions for the first set of instructions in the computer
program;
when the second set of instructions does not contain a
number of instructions greater than the specified loop
threshold, performing the step of:
substituting the second set of instructions for the first set
of instructions in the computer program.
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